Geoid-to-Quasigeoid Separation Computed Using the GRACE/GOCE Global Geopotential Model GOCO02S - A Case Study of Himalayas and Tibet
نویسندگان
چکیده
The geoid-to-quasigeoid correction has been traditionally computed approximately as a function of the planar Bouguer gravity anomaly and the topographic height. Recent numerical studies based on newly developed theoretical models, however, indicate that the computation of this correction using the approximate formula yields large errors especially in mountainous regions with computation points at high elevations. In this study we investigate these approximation errors at the study area which comprises Himalayas and Tibet where this correction reaches global maxima. Since the GPS-leveling and terrestrial gravity datasets in this part of the world are not (freely) available, global gravitational models (GGMs) are used to compute this correction utilizing the expressions for a spherical harmonic analysis of the gravity field. The computation of this correction can be done using the GGM coefficients taken from the Earth Gravitational Model 2008 (EGM08) complete to degree 2160 of spherical harmonics. The recent studies based on a regional accuracy assessment of GGMs have shown that the combined GRACE/GOCE solutions provide a substantial improvement of the Earth’s gravity field at medium wavelengths of spherical harmonics compared to EGM08. We address this aspect in numerical analysis by comparing the gravity field quantities computed using the satellite-only combined GRACE/GOCE model GOCO02S against the EGM08 results. The numerical results reveal that errors in the geoid-to-quasigeoid correction computed using the approximate formula can reach as much as ~1.5 m. We also demonstrate that the expected improvement of the GOCO02S gravity field quantities at medium wavelengths (within the frequency band approximately between 100 and 250) compared to EGM08 is as much as ±60 mGal and ±0.2 m in terms of gravity anomalies and geoid/quasigeoid heights respectively.
منابع مشابه
Accuracy assessment of GOCE-based geopotential models and their use for modelling the gravimetric quasigeoid – A case study for Poland
The GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) has signifi cantly upgraded the knowledge on the Earth gravity fi eld. In this contribution the accuracy of height anomalies determined from Global Geopotential Models (GGMs) based on approximately 27 months GOCE satellite gravity gradiometry (SGG) data have been assessed over Poland using three sets of precise GNSS/levelling ...
متن کاملImprovement of the geoid model over Japan using integral formulae and combination of GGMs
An improved high-resolution gravimetric geoid model covering the four main islands of Japan (Hokkaido, Honshu, Shikoku, and Kyushu) was developed on a 1 × 1.5 arc-minute grid from EGM2008, GOCO02S/EGM2008, and terrestrial gravity data. A modified form of the Stokes-Helmert scheme was applied for the determination of the geoid using an empirically determined optimal spherical cap size. Handling ...
متن کاملEvaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights
Recently, four global geopotential models (GGMs) were computed and released based on the first two months of data collected by the GOCE (Gravity field and steady-state Ocean Circulation Explorer) dedicated satellite gravity field mission. Given that GOCE is a technologically complex mission and different processing strategies were applied to real space-collected GOCE data for the first time, ev...
متن کاملDid the new geopotential models improve the fit of gravimetric quasigeoid in Poland to GPS/levelling data?
The choice of global geopotential model used in remove-restore technique for determination of regional quasigeoid from gravity data may affect the solution, in particular when the accuracy is supposed to reach a centimetre level. Global geopotential model plays also an important role in validating height anomalies at GPS/levelling sites that are used for the estimation of the external accuracy ...
متن کاملCompilation of the regional quasigeoid model for New Zealand using the discretised integral-equation approach
We evaluate the new regional quasigeoid model (OTG12) for New Zealand using the method which utilises the discretised integralequation approach for computing the near-zone contribution. The far-zone contribution is computed by modi ed spherical harmonics of the geopotential. Adopting the remove-compute-restore computation scheme, the nearand far-zone contributions are computed for the residual ...
متن کامل